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ABSTRACT – Knowing the maximum ranges of explosive-driven 
fragments is critical to a safe and efficient testing operation.  This 
presentation explores the aerodynamics of fragments with sometimes 
counterintuitive conclusions.  The "Davis Range," traditionally used at 
Los Alamos to set clearance distances for fragment-producing HE-driven 
experiments, is developed in detail, exploring the assumptions and safety 
factors that are built in.  Also developed (in a cursory manner) is a new 
methodology for estimating the maximum range of secondary fragments 
(those launched by the HE blast wave).	
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Explosive-driven fragments (shrapnel) are a 
principal long range operational hazardprincipal long-range operational hazard

• Rough-edged

• Strips or Chunks

• Metal or MineralsMetal or Minerals
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Explosive-driven fragments (shrapnel) are a 
principal long range operational hazardprincipal long-range operational hazard

• Initial velocities up to 
3000 m/s

• Typical ranges up to 100s 
fof meters

Sikhote-Alin MeteoriteSikhote Alin Meteorite
Russia 1947

O t h i d
U N C L A S S I F I E D

One tough window
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Its not the running into things:
its the running into people we want to avoidits the running into people we want to avoid

• The military has collected fragment 
and blast data on munitions forand blast data on munitions for 
decades

– The results are codified in DoD
6055.9 “DOD Ammunition and 
Explosive Safety Standards”Explosive Safety Standards

• DOE adopted these rules as 
requirements 

Hazardous fragments– Hazardous fragments
– 15-79 J: serious injury
– >79 J: severe injury or death

• DOE ESM allows reduced hazard 
zones if there is appropriate 
analysis

U N C L A S S I F I E D
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There are two classes of fragments:
Primary & SecondaryPrimary & Secondary

• Primary fragments come from metal directly or nearly in 
contact with the explosivecontact with the explosive
– Pressures are considerably above the yield strength of the material
– Generally torn from the expanding case, 1-3 km/s launch

Can be whole plates (often by design)– Can be whole plates (often by design)
– Planar shock or initiation experiments
– Active armor plates

Secondary fragments are usually launched by the• Secondary fragments are usually launched by the 
close-in blast from the explosive
– Pressures below the yield strength of the material

Structures likely remain whole 10s 100s m/s launch– Structures likely remain whole, 10s-100s m/s launch
– Can “fly” like a Frisbee® (if you’re unfortunate)

U N C L A S S I F I E D
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Predicting the formation and flight of shrapnel is 
important for safe and efficient operationsimportant for safe and efficient operations

• Explosives move material in predictable ways
The size of metal fragments can be estimated– The size of metal fragments can be estimated

– Initial velocity and direction (of primary 
fragments) can be estimated

– The trajectory (flight path) can be estimatedThe trajectory (flight path) can be estimated
– Aerodynamics applies to chunks as well as 

aircraft

• Hazard zones are usually defined by the “largest” primary fragmenty y g p y g
– “Largest” can mean weight, or specific dimension

• Secondary fragments must be identified for each test configuration• Secondary fragments must be identified for each test configuration
– There is a new method to estimate launch velocity and range

U N C L A S S I F I E D
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The fundamental parameters for every 
trajectory are what you might expecttrajectory are what you might expect

• The fragment • The flight
– Mass
– Geometry

Drag

– Drag orientation
– “Normal”
– Tumbling– Drag

– (Lift)

• The launch

Tumbling
– Aerodynamically 

unfortunate
Lift orientationThe launch

– Initial velocity
– Initial angle

– Lift orientation
– “Normal” & Tumbling
– Angle-of-Attack

• The air
– density

U N C L A S S I F I E D

y
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Knowing the mass and geometry of the fragments 
is the starting pointis the starting point

• Explosives generally break 
things
– The sizes of the pieces are 

important for knowing:
– How far the fragments fly
– What damage (hazard) they 

present
G d i f– Grooves and scoring of 
encasing metal can alter the 
size distribution of fragments

Keeping fragment size large– Keeping fragment size large 
enough to be effective is by 
design 

U N C L A S S I F I E D
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Mott’s distribution for fragment size (weight) is a useful 
approximation to measured valuesapproximation to measured values

• The Mott theory tends to 
i h l foverestimate the largest fragments

– The biggest fragments are the 
fewest

– The biggest fragments fly theThe biggest fragments fly the 
farthest

• The parameters in the distribution 
are functions of the metal/explosive p
pair
– Only the most common pairs have 

been calibrated

• Other theoretical or heuristic 
distributions are also available

U N C L A S S I F I E D
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Initial velocities of most primary fragments are 
simply estimated by a Gurney analysissimply estimated by a Gurney analysis

• Gurney analysis is algebraic u(r)
– Uses energy and momentum 

conservation
– Assumes linear velocity 

di t f d t ti

( )

um

gradient of detonation 
products

• Closed-form formulae forClosed form formulae for 
initial velocity of primary 
fragments (e.g., cylinder) r0

C = total mass of HE
M = total mass of metal
u = velocity of metal = v

U N C L A S S I F I E D

um = velocity of metal = vlaunch
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Gurney analysis provides analytical estimates 
for primary fragment initial velocitiesfor primary fragment initial velocities

• The infinite tamped 
sandwich, cylinder, and 
sphere analyses are a 
family of resultsfamily of results
– These are essentially the 

same problem in 1-, 2-, or 
3-D3 D

• The open-face and 
symmetrical sandwich are 
also a similar family
– Both require the explicit use 

of momentum conservation

U N C L A S S I F I E D
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Gurney analysis can also be used to estimate the initial 
launch direction in some configurationslaunch direction in some configurations

• For a grazing detonation 
(d t ti ll l t(detonation parallel to 
the wall)

    sin1 v







• Knowing this direction 
and velocity are first


2

s
2D





and velocity are first 
order trajectory parameters

• There is potential for limiting p g
fragment range by thoughtful 
orientation of the experiment

U N C L A S S I F I E D
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The flight of any wing (or chunk) depends on 
the drag and liftthe drag and lift

• The aerodynamic coefficients of 
some model wings were measured

2
Drag coefficient

some model wings were measured 
by SNLA in 1981

– Data from the vertical windmill 
project

1

p j
– Measured at all Angles-of-Attack 

(AoA)

Lift
0
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U N C L A S S I F I E D-1.5

-1.0



U N C L A S S I F I E D

Simple momentum analysis gives crude 
analytic approximations to these data

2

analytic approximations to these data
• Drag looks like

1
sin2(AoA)

• Lift looks like

1 5
0

0 30 60 90 120 150 180

sin(AoA).cos(AoA)

Lift
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The third aero coefficient is the moment about 
the 1/4 chord Cthe 1/4-chord, Cm

• Measures torque around 
th t diti l d i

0.0

0.1

0 30 60 90 120 150 180

¼-chord moment coefficient

the traditional aerodynamic 
center

• The distance from the 1/4 -0.3

-0.2

-0.1
0 30 60 90 120 150 180

• The distance from the 1/4-
chord point to the Center-
of-Pressure (CoP) is ∆c: lift

-0.5

-0.4

Cm  c  Cl
2 Cd

2

dragm l d

Center-of-Pressure =
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Movement of the CoP with AoA provides a restoring 
force to keep fragments flying with maximum dragforce to keep fragments flying with maximum drag

• Deviations from normal flight 
are self-correcting becauseare self correcting because 
lift and drag forces move the 
center-of-pressure

– Positive feedback is 
approximately linear over all

+

approximately linear over all 
Angles-of-Attack

• This notion greatly simplifies
trajectory calculationsj y
because drag is simple and 
reasonably constant

– Cd ~ 2

• No net lift
– Cl ~ 0

Lift & drag forces
move the Center-
of Pressure

U N C L A S S I F I E D

of-Pressure
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Full ballistic equations can be cast in terms of 
areal density or a characteristic lengthareal density or a characteristic length

y
Motion along trajectory

du
dt

 g  sin  1
2 Cd 

A
m
 u2

u
Lift


x

Motion along trajectory

 g  sin  1
2 Cd 

1
L
u2

Drag Gravity

x

Similar for lift

u d
dt

 g  cos  1
2 Cl 

A
m
 u2

 g  cos 1
2 Cl 

1
L
u2
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Dave Fradkin (~2000) performed range calculations 
using straightforward models for size velocity & dragusing straightforward models for size, velocity, & drag

• Measured sizes of DU fragments using 
x radiographyx-radiography
– Fit results to a Mott distribution

• Gurney analysis for initial velocity

• Simple drag model (flat flight)
– Drag a function of Mach Number

• Random launch angles 120• Random launch angles

• Polar range diagrams are 60

80

100

Polar range diagrams are 
instructive, but not 
operationally convenient

20

40

60
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This numerical calculation (with gravity) shows velocity 
decreases exponentially with distancedecreases exponentially with distance 

• Drag coefficient is constant at 2.0 Aluminum: 1.8-mm thick
L=50 m

• Launch angle is for maximum range 
(later viewgraph)

• Exponential velocity drop over 
j i f j

U0 = 1500 m/s
 = 20 deg
Cd = 2.0 @ all velocities

majority of trajectory suggests an 
approximation:

Gravity is a second-order effect for 
t f th fli ht R 244most of the flight Range = 244 m

U N C L A S S I F I E D
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Using inertial and drag forces only give a useful 
solution for velocity as a function of distancesolution for velocity as a function of distance

• Air drag is balanced by inertial deceleration

deceleration  drag

m  a  A  h  m du
 1

2 Cd  A  air  u
2

Characteristic length

L = ρm * h/ ½ Cd* ρairm 
dt 2 d air

L  du
dt

 u2  0

ρm / d ρair

=  (m/A) /  ½ Cd* ρair

• Solution gives velocity as function of distance and L
dt

u  u0  e
x /L

U N C L A S S I F I E D
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The exponential velocity approximation inserted into 
the full ballistic equations allows an analytical solution:the full ballistic equations allows an analytical solution:

• These approximate solutions are 
spreadsheet friendly and agree

Range vs Initial Velocity (@20°)
Cd = 2.0 at all velocities

250

300

350

spreadsheet friendly and agree 
remarkably well with the full 
numeric solutions y = 52.478Ln(x) - 139.98

R2 = 0.9995
100

150

200

250

A i t
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Approximate solution of the ballistic problem with gravity using 
ti l l it di t l ti i ld i t t texponential velocity-distance relation yields an important parameter

• A new parameter of the problem:

35

40R 
L  g

u0
2  sin0

20

25

30

n
g

le
 [

d
e
g

]– This has all the things you would 
expect to affect the flight distance

– Metal & air density

5

10

15

L
a
u

n
ch

 A
ny

– Gravity
– Initial velocity
– Launch angle

0
1.0E-06 1.0E-04 1.0E-02 1.0E+00

R

• Differentiation of the solutions gives 
Launch Angle for maximum range
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Parameter “R” suggests an envelope for maximum 
range as a function of Characteristic Lengthrange as a function of Characteristic Length

7.00

100  1000

L [m]  Uo [m/s]typical primary fragments

5.00

6.00
100  1000
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50  2000
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L  g

u0
2  sin0
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A further simplification of the maximum-range 
envelope gives the “Davis” rule:envelope gives the Davis  rule: 

• Maximum range (Xmax)  only 
dependent on the Characteristicdependent on the Characteristic 
Length (L)

• Looking at the Range vs R plot, 

Max. Range ≤ 8L

X [ ]≤ 90 h [ ] [ / 3]all possibilities are contained 
below ~ 6-7.L

Xmax [m]≤ 90 . h [cm] . m [g/cm3]

h = length of fragment in direction6.00

7.00

h = length of fragment in direction 
of flight (thickness)
m= density of fragment

2.00

3.00

4.00

5.00

6.00

– We conservatively take “8” as 
the factor

0.00

1.00

R
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Secondary fragments add additional 
parameters (complications) to the ballisticsparameters (complications) to the ballistics 

• Launched “whole”
– Probably short range

• Possibly aerodynamically stable
Spin stabilized (Frisbee)– Spin stabilized (Frisbee)

– Large Characteristic Length, L
– Length in direction of flight

Lift– Lift

• ‘Difficult to determine’ initial velocity
– Interaction with near-field blast wave
– Impulsive launch
– Drag coupling

U N C L A S S I F I E D
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Local experience shows some secondary 
fragments “fly”fragments fly

• Now need to know more things
– Launch velocity, u0

– Coupling of close-in blast with object
– Reflected impulse

D i bl t– Drag in blast wave
– Range is sensitive to u0

– Appropriate scaled length
– Length in the direction of flight may be the “long” dimension
– Characteristic length (L) can be largeg ( ) g

– Flight with lift and drag
– Lift & drag coefficients for two or more faced fragments

U N C L A S S I F I E D
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Local experience shows some secondary 
fragments “fly”fragments fly

• Now need to know more things Range vs Initial Velocity (@20°)
Cd = 2.0 at all velocities

300

350

– Launch velocity, u0
– Coupling of close-in blast with object
– Reflected impulse

D i bl t y = 52.478Ln(x) - 139.98

150

200

250

– Drag in blast wave
– Range is sensitive to u0

– 100s m/s

y ( )

R2 = 0.9995
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Initial Velocity [m/s]
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Exact
Log. (Exact)

1 km/s

– Appropriate scaled length
– Length in the direction of flight may be the “long” dimension

Characteristic length (L) can be large

Initial Velocity [m/s]

– Characteristic length (L) can be large

– Flight with lift and drag
Lift & drag coefficients for two or more faced fragments

U N C L A S S I F I E D

– Lift & drag coefficients for two or more faced fragments
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Sir G. I. Taylor first formulated the idea of a 
“Fluid Structure Interaction ” (FSI)Fluid-Structure Interaction,  (FSI)

• Basic concept
Motion of a structure may– Motion of a structure may 
relieve blast wave pressure 
acting on it

– Light weight plates are pushed 
out of the way by the first part 
of a blast wave

O t th l t t f th– Outrun the later parts of the 
Taylor wave

– Full impulse is not delivered

– Heavy plates hardly move
– Full reflected impulse delivered
– Net velocity can be lower

U N C L A S S I F I E D
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Measurement of blast wave behind tent fabric 
shows FSI effectshows FSI effect

• Tent material areal density = 1.4 kg/m2

Th t ti• Three-station average: 
pressure transmission = 57%

• FSI calculated transmission = 54% 100% P0

57% P0

0 
ti

t0
* 

0hf

 php

tito
*

U N C L A S S I F I E D
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The methodology to estimate initial 2°-fragment velocity uses 
t d d bl t li d FSI l l tistandard blast scaling curves and FSI calculations

• Equations and methods from Kinney 
& Graham “Explosive Shocks in Air 2nd Table XI (A): Impulse& Graham, Explosive Shocks in Air, 2
Ed.” estimate the impulse

• Analytical FSI equations from 
Kambouchev Noels & Radovitzky

1

10

A
 [

b
a
r-

m
s]

ab e ( ) pu se

Kambouchev, Noels, & Radovitzky, 
“Nonlinear compressibility effects in fluid-
structure interaction and their implications on 
the air-blast loading of structures,” J. App. 
Physics 100, 063519 (2006) 0 01

0.1

e
r 

a
re

a
, 

I/
A

Physics 100, 063519 (2006)

– K&G: weight & distance of HE  P/P0, Isp
– K, N,&R: areal density of 2

transmitted Isp, uo(2)
0.001

0.01

0.1 1 10 100 1000Im
p

u
ls

e
 p

e
sp o( )

• Entire calculation done on a 
spreadsheet

– Result is an initial velocity

Scaled Distance. Z[m/kg^1/3]
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Possible flight dynamics of secondary fragments:Possible flight dynamics of secondary fragments:

• Normal
– Highest drag orientation
– No lift, shortest range

• Tumbling• Tumbling
– Averaged drag coefficient about one-half of maximum (~1)

– 360° average of aerodynamic-coefficient fits
No net lift– No net lift

– Low launch velocities (usually)

• Aero-stable
– Thin edge leading always
– Possible Angle-of-Attack to trajectory giving lift

U N C L A S S I F I E D
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Trajectories for four cases: 12”x12”x1” steel
L 203 1000 / l h l 20° A A l ti t t j tL=203m, u0=1000 m/s, launch angle=20°, AoA relative to trajectory

90°
AoA
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Trajectories for four cases: 12”x12”x1” steel
L 203 1000 / l h l 20° A A l ti t t j tL=203m, u0=1000 m/s, launch angle=20°, AoA relative to trajectory

90°
AoA

0°
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Trajectories for four cases: 12”x12”x1” steel
L 203 1000 / l h l 20° A A l ti t t j tL=203m, u0=1000 m/s, launch angle=20°, AoA relative to trajectory

90°
65°

AoA

0°
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Trajectories for four cases: 12”x12”x1” steel
L 203 1000 / l h l 20° A A l ti t t j tL=203m, u0=1000 m/s, launch angle=20°, AoA relative to trajectory

90°
65°

AoA

0°

10°
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What lift can do for an aero stable plateWhat lift can do for an aero-stable plate
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Bottom Line:Bottom Line:

• Identify furthest-flying primary fragment
– Generally in contact with explosive
– Greatest “thickness-density product”

– Defines characteristic length, L
A l D i ’ R l– Apply Davis’ Rule

• Identify potential secondary fragments
– Generally spaced from explosiveGenerally spaced from explosive
– Eliminate or mitigate

– Design to break up into pieces with small L
– Knock’em down (mitigate)Knock em down (mitigate)

– Calculate initial velocity and potential range
– This is a last resort

U N C L A S S I F I E D
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We’ve talked about models and 
approximations:approximations:

• Remember what George 
B idBox said:

“All models are wrong, 
but some are useful.”bu so e a e use u

George E P Box FRS

U N C L A S S I F I E D

George E. P. Box, FRS


